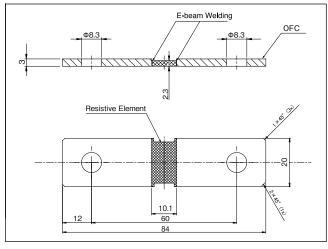
ISA-WELD SHUNT RESISTORS

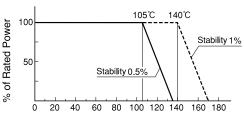
BAS

Features

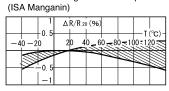
- · Shunt resistor developed for current sensing of automotive battery management
- · Electron beam used to weld the resistive element and terminals
- Excellent electrical and mechanical structure

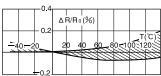

Max. Current (Continuous) 350A

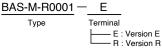
Туре	Load Capacity (W) *	Resistance (Ω)	Tolerance (%)	Temp. Coefficient (20°C ~60°C)	Operating Temp.	Internal Heat Resistance (°C/W)a-b	Weight (g)
BAS-M-R00005	20	0.05m	±5	±100ppm/℃		1.5	
BAS-M-R0001	15	0.1m			_40~+170	2	40
BAS-M-R0002	10	0.2m	±5	±50ppm/°C	<u>−</u> 40~+170	3	40
BAS-M-R0005	4	0.5m				7	



⚠ Precautions

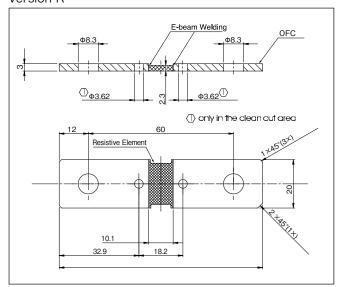

Version E


Power Derating Curve


Resistance Change Versus Temp.

Resistance Change Versus Temp. (Alu-Chrom)

How to order



Order for a single piece acceptedd

Standard Resistance (Stock)

BAS-M-R0001 $(0.1 \text{m}\Omega \pm 5\%)$

Version R

Performance

Parameters	Test Conditions		
Thermal Shock	-65°C, 25°C, 125°C, 25°C 25cycles	±0.2%	
Over load	5×Wattage Rating 5sec	±0.2%	
Resistance to Solvents	IPA 3min	No damage	
Low Temp. Storage and Operation	MIL-R-26E	±0.1%	
Resistance to Soldering Heat	260°C 10sec	±0.2%	
Moisture Resistance	Near 100%RH, +25°C, +65°C, -10°C 10cycles (10days)	±0.2%	
Shock	50g's, 11ms	±0.2%	
Vibration, High Frequency	MIL-STD-202 Method 204D-B	±0.2%	
Load Life(Teminal Temp.)	1.5Hr ON 0.5Hr OFF 2000Hr	±0.5 %	
Load Life (Teminal Temp.)	1.5Hr ON 0.5Hr OFF 2000Hr	± 1 %	
Storage Life at Elevated Temp.	MIL-STD-202 method 108A-F	±0.3%	
High Temperature Exposure	gh Temperature Exposure 140°C, 2000Hr		
Current Noise	MIL-STD-202 method 308	±0.01%	
Voltage Coefficient	MIL-STD-202 method 309	linearity error less than 120dB	
Thermal EMF(µV / °C)	0~60°C	0.6 μV/°C max	
Frequency Characteristic	Inductance	<3nH	

^{*} Refer to the power derating curve. Proper measures for heat radiation should be taken.